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Significance

 The brain operates as a 
predictive system, using an 
internal model to predict 
upcoming sensory inputs under 
uncertain conditions. Although 
prediction error signals, which 
reflect the discrepancy between 
predicted and actual sensory 
events, are a crucial component 
of predictive processing, the 
neural mechanisms underlying 
these signals remain elusive. 
Using a computational model, we 
investigate synaptic plasticity 
rules that learn prediction error 
signals in a local recurrent circuit. 
We find that recurrent networks 
trained with the proposed 
plasticity rules explain many 
features of prediction errors 
observed in experimental 
studies. Our study clarifies the 
basic requirements for learning 
with prediction error signals in 
recurrent networks, a crucial step 
toward understanding how the 
brain constructs its internal 
model of the environment.
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The predictive coding hypothesis proposes that top–down predictions are compared 
with incoming bottom–up sensory information, with prediction errors signaling the 
discrepancies between these inputs. While this hypothesis explains the presence of pre-
diction errors, recent experimental studies suggest that prediction error signals can 
emerge within a local circuit, that is, from bottom–up sensory input alone. In this 
paper, we test whether local circuits alone can generate predictive signals by training 
a recurrent spiking network using local plasticity rules. Our network model replicates 
experimentally observed features of prediction errors, such as biphasic neural activity 
patterns and context dependency. Our findings shed light on how synaptic plasticity can 
shape prediction errors and enable the acquisition and updating of an internal model 
of sensory input within a recurrent neural network.

synaptic plasticity | recurrent spiking network | predictive coding | prediction error signal

 The brain is thought to learn an internal model of the environment to predict upcoming 
sensory inputs ( 1 ). In support of this hypothesis, a wide variety of experiments have 
reported mismatch responses in the brain ( 2   – 4 ). These responses are typically elicited by 
presenting subjects with a series of familiar or consistent stimuli, and then introducing 
an unexpected stimulus. Mismatch responses then emerge as the difference between the 
neural activity evoked by the expected stimulus and the unexpected stimulus. For example, 
using electroencephalography (EEG), unexpected stimuli have been shown to elicit a 
mismatch negativity (MMN) response in humans, typically seen as a biphasic response 
in which a negative deflection is followed by a positive one ( 2 ,  5       – 9 ). Early studies of this 
mismatch response were primarily conducted using auditory oddball paradigms ( 2 ,  5 ). 
However, many studies have since shown MMN-like responses emerging in a variety of 
sensory tasks and brain regions, including visual ( 9       – 13 ) and auditory ( 14 ,  15 ) areas, as 
well as cognitive processing regions like prefrontal cortex ( 16 ,  17 ). Although there may 
be some differences between these signals, together this suggests that mismatch responses 
may constitute a general mechanism for automatically detecting deviations from the brain’s 
internal model.

 A plausible explanation for these mismatch signals in the brain is provided by the 
predictive coding hypothesis ( 2 ). In predictive coding, at each level of sensory processing, 
top–down predictions from the brain’s internal model of the world are used to cancel out 
incoming sensory information. Only the discrepancies between the predicted and actual 
sensory information are communicated to higher levels of the cortical hierarchy. These 
discrepancies are called prediction errors and they are thought to be critical for the brain 
to improve its internal model, and thus the predictions passed down through the sensory 
processing hierarchy ( 18   – 20 ). Several models derived from the predictive coding hypoth-
esis have been implemented using biologically plausible models of neurons to explain the 
mismatch signals observed in the brain. For example, Wacongne et al. ( 3 ) proposed a 
spiking neuron model of predictive coding to account for the MMN in an oddball par-
adigm ( 3 ). Relatedly, a study by Lieder et al. ( 21 ) based on dynamic causal models provided 
a potential link between the MMN and Bayesian filtering ( 21 ). In these models, mismatch 
responses are explained to be prediction errors, computed at different levels of the sensory 
processing hierarchy.

 Although these types of generative predictive coding models provide a broad explanation 
of the emergence of mismatch signals, there are two important aspects that they do not 
capture. First, there is considerable evidence that the brain develops internal predictions 
through experience, and thus that learning and prediction errors occur alongside one 
another ( 5 ,  7 ,  22   – 24 ). While several studies have attempted to demonstrate how a set of 
synaptic plasticity rules can account for both prediction and error signaling within a 
network ( 25     – 28 ), it is still unclear whether the prediction error signals that emerge at the 
population level after learning can account for those observed in experimental data. 
Second, several studies have shown that mismatch responses can occur automatically in D
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contexts during which there appears to be minimal top–down 
input, like when subjects are inattentive or even sleeping ( 2 ). 
However, most existing models focus on the emergence of 
 mismatch signals in hierarchical circuits, and do not explain how 
such signals can emerge within a local circuit, from bottom–up 
sensory input alone.

 In this paper, we addressed these open questions by simulating 
a recurrent spiking network using local plasticity rules we recently 
proposed ( 29 ). The network model consists of a population of 
excitatory and inhibitory spiking neuron models. The synapses 
onto excitatory neurons undergo synaptic plasticity, allowing them 
to develop connectivity patterns that predict the network activity 
evoked by upcoming sensory events. Simultaneously, inhibitory 
synapses undergo additional plasticity to maintain the excitatory- 
inhibitory balance. We found that recurrent networks trained with 
these plasticity rules replicated many features of prediction errors 
that have been observed in experimental studies ( 2 ,  5       – 9 ). For 
example, the prediction errors displayed a similar biphasic pattern 
to the MMN waveform, and were context-dependent ( 30 ,  31 ). 
Overall, our study provides insights into the mechanisms by which 
synaptic plasticity shapes prediction errors, and the acquisition 
and updating of an internal model of sensory input within a recur-
rent neural network. 

Results

 To test whether predictive signals can be computed in a local 
circuit, we simulated a recurrent spiking network consisting of 
excitatory (E) and inhibitory (I) model neurons ( Fig. 1A  ). Only 
excitatory neurons were driven by external stimuli. Neurons were 
assumed to generate spikes stochastically, mimicking the noisy 
fluctuations of membrane potentials. We presented a number of 
stimuli to the network, each of which increased the firing rate of 
a nonoverlapping subset of excitatory neurons (see SI Appendix, 
Fig. S3  for overlapping assemblies). All feedforward connections 
were held fixed.        

 We investigated how prediction errors are formed through sen-
sory experiences by using synaptic plasticity rules that we proposed 
previously ( 29 ). We designed the model such that excitatory and 
inhibitory synapses undergo distinct plasticity rules. Briefly, excit-
atory synapses that contributed to predicting neural activity were 
strengthened ( 32     – 35 ) ( Fig. 1B  , blue square; Eqs.  8   and  9   in 
 Methods ), while the inhibitory synapses were modified to maintain 

the excitation–inhibition balance (EI balance) by learning to pre-
dict the recurrent excitatory potential ( Fig. 1B  , orange square; 
Eqs.  10   and  11   in Methods ). In the following, we describe the 
behavior of each plasticity rule more specifically.

 The change in excitatory synaptic strength between presynaptic 
neuron j and postsynaptic neuron i is proportional to the error 
between the instantaneous excitatory firing rate of the postsynaptic 
neuron  f E

i
    and the total internally driven excitatory inputs filtered 

by the sigmoidal function  yE
i

    as:

 ΔW EE
ij = �

[

f Ei − yEi
]

∙ xEj ,
  

  where  xE
j

    is a postsynaptic potential evoked by excitatory neuron 
j (Eqs.  6   and  7  ). Under this rule, in the case of a positive error, 
the synapse undergoes long-term potentiation (LTP) and in the 
case of a negative error, the synapse undergoes long-term depres-
sion (LTD) (SI Appendix, Fig. S1A  ).

 Similarly, for the inhibitory plasticity, the change in synaptic 
strength between presynaptic neuron j and postsynaptic neuron i 
is proportional to the error between the sigmoidal of the total 
excitatory  yE

i
    and inhibitory  yI

i
    inputs as:

 ΔW EI
ij = �

[

yEi − yIi
]

xIj ,
  

  where  xI
j
    is the postsynaptic potential evoked by inhibitory neuron 

j (Eqs.  6   and  7  ). As under the excitatory plasticity rule, inhibitory 
synapses were updated when the presynaptic activity and the error 
term coincided, with a positive error leading to LTP while a neg-
ative one led to LTD (SI Appendix, Fig. S1B  ). 

Emergence of a Biphasic Prediction Error in a Local Recurrent 
Network. Numerous experimental studies using EEG and 
magneto- encephalography have shown that a mismatch signal 
arises in the auditory cortex when a rare “unexpected” auditory 
stimulus occurs among a sequence of consistently repeated 
“expected” stimuli (2, 36, 37). This mismatch signal is measured by 
subtracting the response to the expected event from the response to 
the unexpected one. Typically, this response difference (also known 
as a difference wave) comprises both a negative (MMN) and a 
positive component (2, 5–9). Intriguingly, further experimental 
studies have found that the inferotemporal cortex shows similar 
biphasic mismatch responses when a violation of transitional rules 
imposed during learning occurs (9). Despite the consistency of 
these observations over various tasks, the plasticity mechanism that 
generates biphasic mismatch response is still unclear.

 We first asked whether the proposed model could account for 
this biphasic mismatch response when a transition is violated in 
a learned sequence. To this end, a sequence with the deterministic 
transition “ABC” was presented to the network during a learning 
phase ( Fig. 2 A  , Top ). The excitatory synapses within each assembly 
(i.e., group of neurons targeted by the same stimulus, e.g., “A”) 
increased in strength through learning, indicating the formation 
of cell assemblies for all stimuli ( Fig. 2B  , diagonal blocks). Second, 
between-assembly connections for assembly A to B and B to C 
were strengthened, indicating that the model learned the transition 
probabilities between stimulus patterns as we have shown previ-
ously ( Fig. 2B  , blue squares) ( 29 ).        

 We then investigated whether the network which learned ste-
reotypical sequences showed a prediction error signal when an 
unexpected sequence was presented. To this end, we measured the 
entire network response over an expected sequence (ABC) and 
a sequence with an unexpected transition (ABA) ( Fig. 2 A  , 
 Bottom ). In this analysis, all synaptic weights were fixed so that 

Plastic
Static

Inh

Exc Inh
A B

+
−

+ −

Exc
external input

Exc 
pop.

Inh 
pop.

inh. error

exc. error
weight update

weight update

Fig. 1.   Model. (A) A network model with distinct excitatory and inhibitory 
populations. Only excitatory populations are driven by external inputs. 
Only synapses that project to excitatory neurons are set to be plastic. (B) 
A schematic of the plasticity rules proposed in ref. 29. Excitatory (blue) and 
inhibitory (orange) synapses projecting to an excitatory neuron (triangle) obey 
different plasticity rules. For excitatory synapses, errors between internally 
driven excitation (blue sigmoid) and the output of the cell provide feedback 
to the synapses (dashed arrow) and modulate plasticity (blue square; exc. 
error). All excitatory connections seek to minimize these errors. For inhibitory 
synapses, the error between internally driven excitation (blue sigmoid) and 
inhibition (orange sigmoid) must be minimized to maintain excitation–
inhibition balance (orange square; inh. error). Note that although excitatory 
and inhibitory potentials were passed through distinct nonlinearities in the 
plasticity rule, actual membrane potentials were calculated using the same 
sigmoid function (Eqs. 3 and 4).
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we could monitor the pure dynamics of the network. Note that 
the transition from pattern B to A in an unexpected sequence 
violated the transition rule established during learning, and 
hence recurrent excitation connections from B to A had not been 
enhanced ( Fig. 2B  , red square). In both the expected and unex-
pected case, the network firing rates immediately after a transi-
tion showed an abrupt drop (early phase) followed by a slower 
rise (late phase) ( Fig. 2C  , around vertical dashed line). However, 
we found a significant difference when the transition violated 
the expected sequence, in the unexpected case: the response 
amplitudes were much stronger in both the negative and positive 
phases, making the resulting error signals biphasic ( Fig. 2D  ; 
membrane potentials shown in SI Appendix, Fig. S2 ), consistent 
with results reported in the EEG literature ( 2 ,  3 ,  5 ,  6 ,  8 ,  9 ). We 
have confirmed that the biphasic error signal still exists even 
when the assemblies have shared memberships (SI Appendix, 
Fig. S3 A  and B ), as the nonoverlapping part of the assemblies 
learn the sequence structure well (SI Appendix, Fig. S3C  ). 
Furthermore, the model shows biphasic error responses even if 
the expected sequences allow for multiple stochastic transitions 
(SI Appendix, Fig. S4 ).

 We also asked whether the proposed plasticity rule learns to 
generate biphasic prediction error signals in a simple oddball par-
adigm, as previous predictive coding algorithms have shown ( 3 ). 
In an oddball paradigm, two stimuli are presented: a frequent 
stimulus and a rare, “oddball” stimulus. We implemented this 
paradigm by presenting our model with sequences either com-
prising only the frequent stimulus (AAAAA) or ending with a rare 
stimulus (AAAAB) (SI Appendix, Fig. S5A  ). Since the two different 
sequences were presented with equal probability, stimulus A was 
the frequent stimulus, and stimulus B was the rare or oddball 
stimulus. We will call these stimuli the expected and unexpected 

stimulus, respectively. We found that, after the network had been 
trained with the sequences, it showed a biphasic prediction error 
response to the unexpected stimulus compared to the expected 
stimulus (SI Appendix, Fig. S5 B  and C ).

 In summary, these results show that our network model learns 
prediction error responses when presented with a stimulus sequence 
transition violation. In particular, the model shows a biphasic pre-
diction error response, comprising a negative and a positive com-
ponent, as found in neurophysiological experiments.  

Network Mechanism of Biphasic Prediction Errors. Returning 
to the ABC sequences, we next asked what network mechanism 
underlies the biphasic mismatch signal observed (Fig. 2). As the 
network dynamics were determined by recurrent connections 
between and within assemblies, we analyzed the dynamics of the 
excitatory and inhibitory recurrent currents. Here, we limited 
our analysis to the period during which the last stimulus of each 
sequence was presented, as the prediction error occurs only within 
this period. Specifically, we analyzed the currents in assembly C 
for the expected case and in assembly A for the unexpected case 
(SI Appendix, Fig. S6). We first explain the mechanism underlying 
the negative component of the prediction error, which occurs 
during the early phase. During the early phase in the expected 
sequence, excitatory and inhibitory currents showed similar levels, 
indicating that the model approximately maintained EI balance 
(Fig.  3A, expected). In contrast, in the unexpected case, these 
currents showed a significant difference (Fig.  3A, unexpected; 
Fig. 3B), breaking the EI balance. As the inhibitory current in 
the unexpected case was dominant over the excitatory current 
(Fig. 3B), a negative component appeared in the prediction error 
in the early phase. Note that this break in EI balance was triggered 
by a drastic decrease in excitatory currents in the unexpected 
compared to the expected case (Fig.  3A, cyan). Although the 
inhibitory currents showed a similar pattern (Fig. 3A, orange), 
the difference was much smaller than for the excitatory currents 
(Fig. 3C). The significant difference in excitatory currents is likely 
explained by the fact that the recurrent connections from assembly 
B to A were not strengthened during learning, as we have already 
seen (Fig. 2B).

 The positive error component during the late phase is more 
surprising. We analyzed recurrent currents for both excitatory 
and inhibitory neurons during the late phase, as we had done 
for the early phase. As in the early phase, the EI balance was 
maintained in the expected case ( Fig. 3D  , expected) and was 
broken in the unexpected case ( Fig. 3D  , unexpected;  Fig. 3E  ). 
Notably, we found that, in contrast to the early phase, the excit-
atory currents were disproportionately stronger than the inhib-
itory currents in the unexpected case, generating a positive 
prediction error during the late phase. Thus, the EI balance was 
broken in the opposite direction due to a significant decrease in 
inhibitory currents in the unexpected case compared to the 
expected one ( Fig. 3F  ).

 To further understand the origin of the negative prediction 
error measured in the early phase, we also analyzed the total 
incoming recurrent currents from each assembly. The negative 
prediction error during the early phase is the result of the suppres-
sion of excitatory synaptic input in the unexpected case ( Fig. 3C  ). 
By measuring the total excitatory recurrent inputs provided by 
each assembly ( Fig. 3G  ), we found that assembly C in the expected 
sequence was strongly activated by assemblies B and C, whereas 
assembly A in the unexpected sequence was solely activated by 
itself. This explains the observed decrease in excitatory currents in 
the unexpected case. It is due to the fact that strong excitatory 
connections would have formed from assembly B to C during the 
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Fig. 2.   Biphasic prediction error learned through plasticity. (A, Top) During 
learning, the sequence ABC was repeatedly presented to the network. 
We included 300 ms- long gaps between each sequence. (A, Bottom) After 
learning, all synapses were fixed and both the expected sequence ABC and 
the unexpected sequence “ABA” were presented alternately. (B) Learned 
excitatory synapses are shown. Synapses were strengthened within each 
assembly (diagonal component of the matrix) and between assemblies that 
had transitions in the expected sequence (blue squares). Red squares show 
synapses between assemblies in the unexpected sequence. (C) Mean firing 
rates of the whole network during the expected (blue) and unexpected (red) 
sequences are shown. Period during which the last elements of sequences 
were presented was divided into early and late phases. Shaded areas represent 
s.d. over 10 trials. Black horizontal lines show periods during which the two 
responses showed a significant difference. (D) Mean prediction errors during 
early and late phases over 10 independent simulations are shown. Here, 
prediction error was defined as difference between responses to unexpected 
and expected sequences (unexpected − expected). In C and D, P- values were 
calculated using a two- sided Welch’s t test (***P < 0.001).
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learning phase, but not from assembly B to A. The strong 
self-inhibiting currents in assembly A provide another mechanism: 
the negative error response of assembly A during the early phase 
leads to self-disinhibition of the assembly, which in turn enhances 
the positive error response.

 We then repeated this analysis for the late phase. As this positive 
component was the result of suppressed inhibitory input in the 
unexpected case ( Fig. 3F  ), we calculated total inhibitory recurrent 
inputs over different pairs of assemblies ( Fig. 3H  ). We found that 
assembly C in the expected case was inhibited by all assemblies, 
whereas assembly A in the unexpected sequence was inhibited 
only by itself.

 Altogether, these results suggest that negative and positive predic-
tion errors in the early and late phases, respectively, result from dis-
tinct mechanisms. They show further that both negative and positive 
prediction errors can be explained by a disruption in the EI balance 
in the unexpected case, but that the underlying mechanism is dif-
ferent for the two phases: in the early phase, the EI balance is broken 
due to significantly reduced excitatory currents, whereas in the late 
phase, the break is due to reduced inhibitory currents.  

Interplay of Excitatory and Inhibitory Plasticity in Shaping 
Prediction Error Signals. To validate whether the proposed 
plasticity rules are necessary to generate such biphasic prediction 
error signals in our model, we then compared network dynamics 
over multiple conditions: a) fixed recurrent connections, b) no 
recurrent connections, c) fixed excitatory, but plastic inhibitory 
connections, and d) fixed inhibitory, but plastic excitatory 

connections. In both the fixed recurrent connections case (i.e., 
case a) and the no recurrent connections case (i.e., case b), 
unexpected transitions did not lead to significant differences in 
activity compared to the expected case (SI Appendix, Fig. S7 A 
and B). In the fixed excitatory connections case (i.e., case c), we 
found that the unexpected transition led to suppressed activity 
compared to the expected transition, resulting only in a negative 
prediction error (SI  Appendix, Fig.  S7C). Finally, in the fixed 
inhibitory connections case (i.e., case d), we found that the model 
did still show a biphasic error response (SI Appendix, Fig. S7D). 
However, there was an important difference between this case and 
the original experiment case (i.e., Fig. 2C): in case d, the positive 
prediction error was not as sustained as in the original experiment 
case. This is because the original positive prediction error signal 
resulted from the maturation of the inhibitory synapses in response 
to training with the expected sequence, as seen in Fig. 3H.

Learning of Expectation- Dependent Prediction Error Signals. 
The results described above show that the model displays a 
transitional surprise response if a predicted stimulus in a sequence 
is replaced by another stimulus, creating an unexpected transition. 
If the network does indeed come to encode expected sequence 
order through learning, responses to a same stimulus should 
be influenced by how predictable it was given the stimuli that 
preceded it.

 In this vein, a recent experimental study found evidence that 
the primary visual cortex (V1) responds differently to a stimulus 
based on whether the preceding stimulus in the sequence was 
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(B) Differences between excitatory and inhibitory currents in the early phase for the expected and unexpected cases are shown. (C) Differences in excitatory (cyan) 
or inhibitory (orange) synaptic currents between the unexpected and expected cases (unexpected − expected) in the early phase are shown. (D) Same as A, but 
for the late phase. (E) Same as B, but for the late phase. (F) Same as C, but for the late phase. (G) Mean excitatory synaptic currents projecting onto neurons in 
assembly C in the expected case or onto assembly A in the unexpected case are shown. (H) Mean inhibitory synaptic currents in the late phase, projecting onto 
neurons in assembly C in the expected case or onto A in the unexpected case are shown. In B, C, E, and F, P- values were calculated using a two- sided Welch’s  
t test (***P < 0.001). Data points for each case were generated by 10 independent simulations.
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expected or unexpected ( 31 ). In their experiment, extracellular 
neuronal recordings were acquired in awake head-fixed mice view-
ing sequences of visual stimuli “ABCD,” where each stimulus in 
the sequence had a set orientation. Mice were randomly assigned 
to four test days (i.e., days 1 to 4), such that each group experi-
enced a different total number of learning days ( Fig. 4A  ). After 
experiencing the test stimuli once, mice were removed from the 
experiment. To quantify to what extent prediction certainty influ-
ences neural responses, two types of sequences (i.e., “ AB̃CD   ” and 
“ EB̃CD   ”) were used as test stimulus sequences in the experiment. 
Here, “E” was an unexpected stimulus which was not present in 
the learned sequence “ABCD”. It should be noted that the “ ̃B   ” 
notation reflects the fact that the features of the “B” shown at test 
time varied in their orientation by a few degrees compared to the 
trained “B”. To summarize the experimental results, when com-
paring V1 neural activity in mice tested on days 1 and 4 of learn-
ing, the late responses to stimulus “ ̃B   ” in the sequences starting 
with “ AB̃   ” were significantly suppressed, whereas the late responses 
to stimulus “ ̃B   ” in the sequences starting with “ EB̃   ” only showed 
a trend of decreasing over days. The early phase responses showed 
no change (SI Appendix, figure S6 in ref.  31 .        

 We sought to test whether our model is consistent with these 
experimental results. In our simulation, we trained the network on 
an “ ABCD    ” sequence, the duration of each stimulus was 150 ms. 
When comparing our network to the mouse brain, it is important 
to consider that area V1 in adult mice is not a fully random network 
at the start of these experiments. It has been shaped by extensive 
visual experience, which, although it does not include the exact “E” 
stimulus, would include stimuli with overlapping features. To take 
this into account in our model, we also trained our network with a 
single stimulus sequence “E” so that at the test time, the network 
would have some previous experience of all the different stimuli being 
studied ( Fig. 4 B  , Top ). Stimulus sequences were presented one after 
another with 600 ms gaps in between. As learning progressed, recur-
rent connections formed five assemblies, with four of them (i.e., A, 
B, C, and D) being connected by unidirectional projections (as in 
 Fig. 2  and SI Appendix, Fig. S8 ). We then asked how the maturation 
of synaptic strength during learning shapes the prediction errors 
obtained by comparing the response to an expected sequence (i.e., 
“ AB̃CD    ”), and an unexpected sequence (“ EB̃CD    ”), as in the exper-
imental setting described above ( Fig. 4 B  , Bottom ). To reproduce the 
slight noise added to stimulus “B” in the experiment in creating the 
“ ̃B   ” stimulus, we weakly activated three out of five assemblies, while 
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Fig. 4.   Learning of expectation- dependent prediction error signals. (A) The learning phase was divided into four stages. At the end of each stage, all synapses 
were fixed and network responses were tested for expected and unexpected sequences. (B, Top) During learning, sequence ABCD and an isolated stimulus E were 
presented alternately. (B, Bottom) During the testing phase, two sequences, “AB̃ CD” and “EB̃ CD”, were presented to the network alternately. Here, B̃  is a noisy 
version of pattern “B” (Methods). (C, Left) Mean network responses to sequence “ABCD” over different days. (C, Right) Same as the left figure, but for sequence 
“EB̃ CD. (D) Average firing rates in the early and late phases, following the onset of the second stimulus “B̃ ” preceded by “A” (Left) or “E” (Right) over different days 
are shown. (E) Activity difference between day 4 and day 1 for the two sequences during early and late phases are shown. Consistent with an experiment by Price 
et al. (31), only the late phase response to “AB̃ ” was suppressed significantly through learning. (F) Same as D, but for average total recurrent synaptic currents 
in assembly B. (G) Same as E, but for average total recurrent synaptic currents in assembly B. In D–G, P- values were calculated using two- sided Welch’s t tests  
(*P < 0.05, **P < 0.01). Data points for each case were generated by 10 independent simulations.D
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stimulating assembly “B” most strongly (Methods ). To quantify to 
what extent these stimulation protocols influenced network activity, 
we split the period during which “ ̃B   ” was presented into an early (1 
to 50 ms) and a late phase (51 to 100 ms) ( Fig. 4C  ). It should be 
noted that our definitions of early and late phases are shifted up by 
50 ms compared to those used in the mouse V1 experiment (i.e., 51 
to 100 ms for early and 101 to 150 ms for late phase) ( 31 ).

 Using this stimulus design, we calculated the average network 
activity observed in response to the expected and unexpected 
sequences in the early and late phases for each day. Similar to Price 
et al. ( 31 )’s findings, neuronal responses to “ ̃B   ” changed from the 
pre- to postlearning stages, tending to decrease for both sequence 
types in the late phase. For both sequences, the decreases in late 
phase responses were significant, with the suppression measured 
for the “ AB̃   ” sequence being significantly larger than that measured 
for the “ EB̃   ” sequence ( Fig. 4E  ). This is broadly congruent with the 
experimental data in which both sequences showed a decrease trend, 
but only the decrease in the “ AB̃   ” sequence response was significant 
( Fig. 4D  ). Furthermore, as in the experimental data, no significant 
change was observed for the early phase, unless definitions of the 
early and late phases that did not take visual processing delays into 
account were used (SI Appendix, Fig. S9 ). Thus, our findings largely 
recapitulate the experimental results reported by Price et al. ( 31 ). 
It should be noted, however, that the specific experimental result 
replicated here is preliminary, as it was included in Price et al.’s 
preprint on bioRxiv ( 31 ), but not their final published version ( 38 ). 
Based on our model analyses, however, we predict that a follow-up 
study would confirm these preliminary findings.

 To explore the origin of these experience-dependent prediction 
error signals, we calculated the mean recurrent synaptic currents 
within each assembly in response to the expected and unexpected 
sequences in the early and late phases for each day ( Fig. 4F  ). 
Similar to the patterns observed when analyzing whole network 
responses, while the strength of synaptic currents decreased over 
training days for both sequence types, the suppression measured 
for the “ AB̃   ” sequence was significantly larger than that measured 
for the “ EB̃   ” sequence ( Fig. 4G  ). We further found that, in the 
late phase, the differences in excitatory or inhibitory synaptic cur-
rents alone between day 4 and day 1 for the two sequences were 
not statistically significant (SI Appendix, Fig. S10 B  and D ; Late). 
Interestingly, while the change in total synaptic current did not 
show a significant difference in the early phase ( Fig. 4G  ; Early), 
both excitatory and inhibitory currents separately showed signif-
icant changes (SI Appendix, Fig. S10 B  and D ; Early).

 In summary, as we have shown, our model can explain how, 
through training, neuronal assemblies learn to respond differently 
to stimuli resulting from predictable transitions compared to 
unpredictable ones. Specifically, our model successfully recapitu-
lates experimental results from the mouse primary visual cortex 
in which late phase, but not early phase, neural responses are 
suppressed with experience following an expected stimulus tran-
sition, but not an unexpected one.  

Learning Context- Dependent Prediction Error Signals. So far, we 
have demonstrated that our network can develop a comparatively 
simple class of prediction error- related activity. Indeed, in the 
simulations so far, prediction errors were primarily generated by a 
violation of a particular transition between a pair of stimuli. Although 
it is possible that prediction errors only encode a generic error 
signal, shared across multiple stimuli, a recent experimental study 
showed that prediction error signals for particular stimuli emerge in 
a context- dependent manner (30). This experiment demonstrated 
that many neurons that showed strong suppression in response to 

specific stimuli only did so in the expected context. This suggests that 
a highly selective network mechanism exists for encoding context- 
dependent expectations. It follows that nonspecific and population- 
wide inhibition of excitatory neurons that encode specific stimuli 
cannot on its own explain the emergence of expectation- based 
signals. Instead, inhibitory connections may be precisely tuned to 
only generate expectations for sensory stimuli in selective contexts. 
However, a plasticity mechanism that could explain how context- 
dependent prediction errors emerge is still elusive. We therefore 
wondered whether our model could account for learning such 
context- dependent prediction error representations.

 In Audette & Schneider ( 30 ), mice were trained to perform a 
sound-generating spontaneous forelimb movement task to explore 
how movement-based predictions affect neural responses to 
expected and unexpected sounds. During training, a stereotypical 
auditory stimulus was presented each time mice generated a fore-
limb movement. After the animal had undergone sufficient train-
ing to spontaneously produce these movements, mice heard either 
the well-trained expected sound or a novel auditory stimulus with 
a slightly different frequency at the beginning of each forelimb 
movement they produced (“active” condition). These sounds were 
also played in conditions where the animal was not performing 
forelimb movements (“passive” condition). The experiment 
showed that neural responses to the expected sound in the active 
condition were suppressed compared to the same sound heard in 
the passive case. In contrast, responses to the unexpected sound 
under the active condition were enhanced relative to the passive 
case. This result suggests that prediction error signals emerge due 
to a specific combination of stimulus and context in a way that is 
dependent on expectation.

 We show that our model can learn context-specific prediction 
errors as well. To this end, we considered two types of inputs: one 
corresponding to auditory signals, and the other to a motor signal 
from the motor cortex. Excitatory populations were divided into 
two distinct populations, each of them receiving one auditory 
signal (i.e., familiar or novel; A or B) ( Fig. 5 A  , Top ). All neurons, 
excitatory and inhibitory, received distributed step-shaped inputs 
to model motor command signals. We assumed that presentation 
of both auditory and motor command inputs increased excitatory 
drive to neurons targeted by each pattern. During learning, the 
auditory signals A and B were presented to the network alternately, 
with only signal A being combined to the motor signal (active 
condition,  Fig. 5 A  , Bottom ).        

 After learning, we first compared the network responses to the 
familiar stimulus (i.e., stimulus pattern “A”) under the active and 
the passive cases. We simulated responses under the active condi-
tion by measuring evoked dynamics in the network receiving both 
stimulus pattern A and a motor command signal ( Fig. 5 B  , Left ). 
In contrast, we defined responses to stimulus A under the passive 
condition as network responses to stimulus pattern A alone ( Fig. 5 
 B  , Right ). Consistent with the experimental results, the network 
responses to the expected sound in the active condition were sup-
pressed compared to the responses to the same sound heard in the 
passive case ( Fig. 5 C  , Left ). To test whether our model showed 
context-dependent prediction errors as shown experimentally ( 30 ), 
we also compared the network responses to the stimulus pattern 
B under the active and passive cases. Interestingly, in contrast to 
stimulus A, responses to the stimulus B in the active condition 
were enhanced relative to the passive case ( Fig. 5 C  , Right ).

 We then asked what the potential mechanism is underlying the 
emergence of context-dependent prediction errors in the network 
model. As we saw in the simple task, prediction error signals are 
generated by breaking the EI balance with an unexpected stimulus 
presentation. We therefore monitored excitatory and inhibitory D
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recurrent currents during stimulus pattern A or B, as presented 
under two different conditions (i.e., active or passive condition). 
When stimulus A was presented, the strength of both currents was 
not drastically different in the active case ( Fig. 5 D  , Left ), but was 
significantly different in the passive condition ( Fig. 5 E  , Left ). In 
contrast, when the novel pattern B was presented, the EI balance 
was maintained in the passive case ( Fig. 5 E  , Right ), but broken 
in the active condition ( Fig. 5 D  , Right ).

 In summary, these results suggest that our network model with 
prediction-based plasticity can learn context-dependent prediction 
errors, as shown in the experimental study of Audette & Schneider 
( 30 ). The results also showed that prediction errors were generated 
due to a disruption of the EI balance that was precisely tuned in 
a context-dependent manner. Although we have framed this here 
as contextual modulation based upon a signal from the motor 
cortex, the same set-up could apply to other (passive) forms of 
contextual modulation (e.g., a visual stimulus that conditions 
expectations as to the likely auditory stimulus). This is important 
to note as there may be additional specific mechanisms in play in 
the motor system including the sensory attenuation that can 
emerge following learning in active settings ( 39 ).   

Discussion

 In this study, we investigated how plasticity at recurrent excitatory 
and inhibitory synapses can produce prediction errors that carry 
features of mismatch responses observed in the brain. Specifically, 
we trained our model to predict upcoming network activity 
through its excitatory synapses, while its inhibitory synapses were 
tuned to maintain the EI balance ( 29 ). We showed that the net-
work learned the appropriate connectivity patterns to encode 
stimulus statistics and generate prediction error signals when unex-
pected stimuli were presented, in agreement with various experi-
mental results ( 2 ,  5       – 9 ,  30 ,  31 ).

 Predictive coding suggests that mismatch signals may carry 
prediction errors in the brain. Indeed, previous computational 
studies have shown that spiking network models with layered 
cortical architecture trained using predictive coding replicate mis-
match signals ( 3 ). Notably, however, although both predictive 
coding models and our recurrent network model generate predic-
tion errors, there are several differences between the two. First, in 
traditional predictive coding models, predicted state and predic-
tion error signals are typically encoded in separate populations of 
neurons ( 18   – 20 ,  40   – 42 ). In contrast, in our model, both the 
predicted states and prediction errors are represented within a 
single neuron. We achieved this by implementing two distinct 
nonlinear activation functions within single neurons. A potential 
biologically plausible implementation of this feature would be to 
explicitly implement neurons as two-compartment units, where 
a dendritic compartment is nonlinearly connected to a somatic 
compartment, which produces the neuron’s output. We leave the 
question of how exactly prediction and error signals might be 
encoded in more biologically plausible segregated neuron com-
partments and the associated plasticity rules to future work.

 Another difference between traditional predictive coding and 
our model is that, in predictive coding, top–down input predicts 
bottom–up input ( 18   – 20 ,  43 ). In contrast, in our model, predic-
tions are generated locally, by the recurrent input. Experiments 
have shown that mismatch responses occur even when participants 
are engaged in a distractor task that draws attention away from 
the sensory modality in which the oddball stimulus occurs. This 
suggests that top–down input may not always be necessary for 
generating prediction error signals ( 2 ,  44 ). An alternative inter-
pretation is that the locally computed predictions act as a distrib-
uted top–down input to be compared to the bottom–up signal 
from stimulus presentation. It is this comparison that leads to the 
(again, distributed) prediction error signal measurable through 
population averages.
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Fig. 5.   Learning of context- dependent prediction error signals. (A, Top) Model schematic. Excitatory population was divided into two subpopulations, each of 
which received either sound stimulus A or B (green and orange arrows). In addition, all neurons in the network received motor command input. (A, Bottom) 
During learning, the auditory signal A was combined to the motor signal, but signal B was isolated from any motor signal. (B) After learning, sounds A and B 
were presented either coupled with (active) or isolated from (passive) the motor input. (C) Mean network responses to sounds A and B in the passive (Darker) 
and active (Lighter) context. (D) Recurrent excitatory and inhibitory currents while sound A (Left) or B (Right) was presented in the active context are shown. (E) 
Same as D, but in the passive context.
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 We showed that local recurrent connectivity is sufficient to repro-
duce different kinds of prediction error signals. Although a previous 
study suggested that combining recurrent connectivity with top–
down prediction supports associative memory tasks via covariance 
learning, in that study, recurrent connections were trained to predict 
specifically in the spatial domain ( 27 ). Due to the nature of recur-
rent plasticity, the direct relationship between recurrent input and 
prediction error signals generated over time has remained elusive. 
We found that our model learns predictions in the temporal domain 
via local recurrent circuit and thus generates prediction error signals 
over sequential stimuli. How prediction error signals can encode 
both spatial and temporal information remains an open question.

 Our model reproduces the general temporal profile of mismatch 
responses. Experimentally, several types of prediction error signals, 
including the standard MMN and inferotemporal cortical mis-
match responses to visual stimuli violating sequence transitional 
rules, show a biphasic waveform ( 8 ,  9 ). This waveform typically 
consists of an early negative deflection, followed by a positive one. 
Although one must be cautious in interpreting the meaning of 
positive and negative waves in EEG studies, it is notable that a 
very similar biphasic pattern emerges when measuring the differ-
ence in overall neural activity in response to expected and unex-
pected stimuli in our recurrent network.

 Predictive coding in which the prediction and prediction error 
signals are carried by different neurons ( 18   – 20 ,  40 ,  41 ), as opposed 
to a single neuron as in our study, may present some benefits. In 
particular, this may allow for more complex error signals to emerge 
through populations of error neurons specializing, for example, 
in positive and negative errors, respectively. Hertäg and Clopath 
( 24 ) show that such a network can, for example, use negative 
prediction error neurons to represent when an actual sensory stim-
ulus is smaller than predicted, and positive prediction error neu-
rons to represent when an actual sensory stimulus is bigger than 
predicted ( 24 ). In our model, it is conceivable that a similar func-
tion could be achieved using a temporal code, i.e., by modulating 
the amplitude of the positive or negative components of the pre-
diction error signal, specifically. Indeed, we showed that both 
negative and positive prediction errors could arise from a breaking 
of the EI balance. Specifically, negative prediction errors were due 
to a significant decrease in excitatory currents, whereas positive 
ones were due to a decrease in inhibitory currents. Further study 
is required to determine what advantages and disadvantages these 
different implementations present, and which best explains the 
spatial and temporal properties of mismatch signals in the brain.

 The biphasic prediction error dynamics could also be inter-
preted in the context of probabilistic inference, where a Markov 
chain augmented with temporal smoothing could exhibit similar 
behavior. Specifically, a forward inference mismatch (e.g., at the 
unexpected transition) could generate a negative signal, followed 
by a smoothing process on a slower timescale, resulting in a sub-
sequent positive phase. While this interpretation provides a pos-
sible algorithmic explanation, our work provides a complementary 
perspective by showing how such dynamics can emerge mecha-
nistically from biologically plausible synaptic plasticity in recurrent 
networks. Furthermore, beyond the learning of prediction error 
signals, recent studies on predictive inference—particularly in the 
context of sequence learning with context‐ dependent latent learn-
ing—have demonstrated that latent variable models can effectively 
capture complex prediction signals ( 45 ,  46 ). These approaches 
employ Expectation–Maximization algorithms, which have been 
connected to spike-timing-dependent plasticity for sequence 
learning ( 47 ). Further experimental studies are needed to bridge 
the gap between abstract probabilistic inference algorithms and 
the dynamics of prediction error signals in neural circuits.

 Although our model can account for learning a variety of 
prediction error signals, in principle, it cannot learn predictions 
over the global structure of stimulus chunks. The reason behind 
this shortcoming is that our model learns local transition sta-
tistics between stimuli only, but is not designed to learn 
higher-order statistics (e.g., non-Markovian statistics) of stim-
uli. There are several possible ways to overcome this limitation. 
One possible solution is to consider much longer time scales 
than we considered in this study, such as calcium dynamics or 
N-methyl-d-aspartate receptor-mediated (NMDA) spikes. 
Indeed, a previous computational study showed that a 
NMDA-dependent plasticity-like rule could enable prediction 
error signals to be learned over the global structure of a sequence 
( 3 ). Another possible way to achieve this is to consider hierar-
chically structured networks, similar to real cortical regions. In 
such hierarchical networks, subnetworks lower in the hierarchy 
could learn to encode local element-level transitions, while the 
higher-level networks could learn slow and abstract dynamics 
( 48 ), thus developing error signals related to the global structure 
of the sensory inputs. Extending our recurrent network model 
into a hierarchically structured model, and studying the rela-
tionship between recurrently driven and top–down-driven pre-
diction error signals could shed important light on the difference 
between global and local mismatch signals in the brain.

 In conclusion, our study sheds light on the learning mecha-
nisms that may underlie mismatch signals in the brain, and pro-
vides a perspective on the relationship between synaptic plasticity 
and prediction errors. Furthermore, it opens up broad avenues for 
future studies of prediction error signals in hierarchical networks, 
and may contribute to the development of more flexible and bio-
logically plausible models of neural computation.  

Methods

Our recurrent neural networks consist of NE excitatory and NI inhibitory neurons. 
During learning, the membrane potentials of neuron i at time t with external 
current Iext

i
 were calculated as follows:

uE
i
(t) =

∑NE

j=1
WEE

ij
xE
j
(t) −

∑NI

k=1
WEI

ik
xI
k
(t) + Iext

i
(t),

 
uI
i
(t) =

∑NE

j=1
WIE

ij
xE
j
(t) −

∑NI

k=1
WII

ik
xI
k
(t),

where uE
i
  and uI

i
  are the membrane potential of i- th excitatory and inhibitory 

neuron, respectively (see Table 1 for the list of variables and functions). The 
strength of external input Iext

i
  takes the value 1 if a stimulus pattern targeting 

neuron i was presented, and 0 otherwise. This structured external input was 
replaced by constant inputs Iconst

i
  of value 0.3 during spontaneous activity. We 

will describe the details of stimulus patterns later. Wab
ij

(

a, b= E;I
)

  is a recurrent 

[1]

[2]

Table 1.   Definition of variables and functions
u
E

i
 , uI

i
Membrane potentials

  xE
j
    ,  xI

k

   Postsynaptic potentials

  Sa
i
   Poisson spike train generated by net-

work neurons
  WEE

ij
     ,  WEI

ik

     ,  WIE

ij
    , WII

ik

   Recurrent connections

  IE
i
, I
I

i
   Synaptic currents generated by network 
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connection weight from j- th neuron in population b to i- th neuron in popu-
lation α. All neurons were connected with a coupling probability of P = 0.5. 
The initial values of synaptic weights Wab

ij
  were uniformly set to 0.5/√pNb). xa

i
  

is a postsynaptic potential evoked by i- th neuron in population a, which will 
be described later.

Spiking of each neuron model in population E was modeled as an inhomoge-
neous Poisson process with instantaneous firing rate f E

i
  with a sigmoidal response 

function φ, with parameters slope β and threshold θ, as:

f E
i
= �

(

uE
i

)

≡ �0

[

1+exp
[

�

(

−uE
i
+�

)]]−1
,

where �0 is the maximum instantaneous firing rate of 50 Hz. Throughout the 
figures in this paper, the normalized firing rate (i.e., f E

i
/�0 ) was simply referred 

to as the firing rate.
Inhibitory neurons’ firing rates were assumed to be calculated with static 

sigmoidal function as:

f I
i
= �

(

uI
i

)

≡ �0

[

1+exp
[

�

(

−uI
i
+�

)]]−1
,

where the maximum instantaneous firing rate �0 was assumed to be the same 
as that of excitatory neurons (i.e., 50 Hz).

Neuron i in population a generates a Poisson spike train at the instantaneous 
firing rate of f a

i
 . Let us describe the generated Poisson spike trains as:

Sa
i
(t) =

∑

t�∈ta
i

�

(

t− t�
)

,

where δ is Dirac’s delta function and ta
i
 is the set of times at which a spike occurred 

in the neuron. The postsynaptic potential evoked by the neuron (i.e., xa
i
 ) is then 

calculated as:

� s İ
a

i
= − Ia

i
+

1

�

Sa
i
,

 
ẋa
i
=

− xa
i

�

+ x0I
a
i
,

where τs = 5 ms, τ = 15 ms, and x0 = 25.

The Learning Rules. As in ref. 29, all excitatory synaptic connections onto 
excitatory neurons obeyed the following plasticity rule to predict the activity of 
postsynaptic neurons as:

ΔWEE
ij
= �

[

f E
i
−yE

i

]

∙ xE
j
,

where yE
i
 is a recurrent prediction of a firing rate, defined as:

yE
i
= �

(

∑NE

j=1
WEE

ij
∙xE

j

)

,

where the function �(∙) is the sigmoid function defined in Eq. 3. In this study, 
the learning rate was set to � = 10−4 in all simulations.

The inhibitory synapses onto excitatory neurons were plastic according to the 
following rule:

ΔWEI
ij
= �

[

yE
i
−yI

i

]

xI
j
,

where yI
i
 was the total inhibitory input onto postsynaptic neuron:

yI
i
= �

(

∑NI

j=1
WEI

ij
∙xI

j

)

.

Through this inhibitory plasticity, inhibitory synapses were modified to maintain 
excitatory- inhibitory balance in all excitatory neurons.

Simulation Details. The parameters used in the simulations are summarized 
in Table 2. All simulations were performed in customized Python3 code written 
by TA with numpy 1.17.3 and scipy 0.18. Differential equations were numer-
ically integrated using a Euler method with integration time steps of 1 ms.

Stimulation Protocols. In all simulations, each stimulus pattern had a dura-
tion of 100 ms and was presented in sequence without an interpattern interval, 
except in Fig. 4, where the duration was set to 150 ms. Sequences of patterns 
were repeatedly presented at 300- ms intervals; when multiple sequences were 
used, they were shown alternately at the same interval. We assumed each neu-
ron in a network was stimulated by one of the stimulus patterns. Presentation 
of each pattern triggered excitatory currents to its targeted neurons of strength 
1 and zero otherwise. In all simulations, we assumed that only external inputs 
caused by the presentation of the stimuli were injected into the network during 
learning. In contrast, we assumed all excitatory neurons received both structured 
and constant background inputs over the whole period occurring after learn-
ing. During learning, all excitatory synaptic connections onto excitatory neurons 
were assumed to be plastic, while they were static during the testing phase after 
learning. The network was trained typically for 1,000 s except in Fig. 4, where the 
simulation time was 300 s.

Measuring Prediction Error Signals. In Fig. 2D, the early and late phases of 
responses were defined as the periods before and after the point at which the 
mean expected and unexpected responses intersected. Mean responses were 
calculated over 10 independent simulations. We then calculated the mean differ-
ences between responses over unexpected and expected sequences (unexpected- 
expected) for the two periods (i.e., early and late phases).

Learning with Overlapping Assemblies. In SI Appendix, Fig. S3, the excitatory 
population was divided into three cell assemblies. Each assembly corresponded 
to a specific stimulus, and shared subsets of neurons represented the overlap 
between stimulus pairs. Specifically, neurons shared between any two assem-
blies corresponded to neurons associated with the respective stimulus pair. The 
proportion of neurons shared between each pair of assemblies was set to 60% of 
the total population. The remaining neurons were uniquely assigned to individual 
assemblies and were not shared between groups.

Evaluation of Prediction Performance. In SI  Appendix, Figs.  S3C and S4C, 
state transition prediction performance was evaluated using a spiking recurrent 
network. In both cases, averaged recurrent inputs were converted to prediction 
probabilities using a softmax function (coefficient of 10), and performance was 
measured using negative log- likelihood. In SI Appendix, Fig. S3C, every 3 s during 
learning, while the cell assembly corresponding to state 2 was driven, we computed 
the population average of recurrent inputs to the nonoverlapping parts of the cell 
assembly corresponding to state 3. To eliminate self- transitions, we set the input 
to assembly 2 to zero. We ran 20 independent simulations to measure the average 
model performance. In SI Appendix, Fig. S4C, the same procedure was applied to 
transitions from state 4; however, since state 4 can transition to both state 2 and 
state 3, prediction probabilities were computed for both transitions, and the neg-
ative log likelihood was determined using the average of these probabilities. For 
comparison with the performance of a machine learning method, we also measured 
prediction performance using a clone- structured cognitive graph method (45). The 
pseudocount was set to 10−30 and we used 1 clone.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Table 2.   Parameter settings

p Connection probability 0.5

  N
E
    ,  N

I
   Network size 500

  �   Learning rate 10−4

  �
s
   Synaptic time constant 5 ms

  �   Membrane time constant 15 ms

  �    ,  �   Parameters for sigmoid 5, 1

  �
0
   Maximal firing rate 50 Hz

  x
0
   Scaling factor of synaptic current 25

  Iext
i

   External current elicited by stimulus  
presentation

1

  Iconst
i

   Constant external current during testing 
phase

0.3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 I
M

PE
R

IA
L

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
Ju

ly
 7

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
18

5.
17

9.
15

.1
16

.

http://www.pnas.org/lookup/doi/10.1073/pnas.2414674122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2414674122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2414674122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2414674122#supplementary-materials


10 of 10   https://doi.org/10.1073/pnas.2414674122 pnas.org

Learning of Expectation- Dependent Prediction Error Signals. In Fig. 4 C 
and D, periods during which stimulus pattern “

∼

B ” was presented were divided 
into an early and a late phase. Mean activities over time were calculated over 
different days for each condition. To simulate stimulation with noisy stimulus “B̃ ,” 
assembly B was stimulated with an input of intensity 0.6 Iext and the two other 
assemblies (i.e., assemblies A and D) with an input of intensity 0.1 Iext, where Iext is 
the strength of the input for all other patterns (i.e., A, B, “C”, and “D”). Specifically, 
the additional stimulation of assemblies A and D during “B̃” is intended to capture 
the experimental effect of introducing jitter into the orientation of stimulus B.

Data, Materials, and Software Availability. The source code for reproducing 
the main figures is available on GitHub: https://github.com/TAsabuki/predic-
tion_error (49). All other data are included in the manuscript and/or supporting 
information.
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